If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+3t-850=0
a = 4.9; b = 3; c = -850;
Δ = b2-4ac
Δ = 32-4·4.9·(-850)
Δ = 16669
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{16669}}{2*4.9}=\frac{-3-\sqrt{16669}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{16669}}{2*4.9}=\frac{-3+\sqrt{16669}}{9.8} $
| 4(9.7-8.i)= | | 42x-22-18x=28 | | 15-4xx=-1 | | 5/3x+1/3x=34/3+8/3x | | -9(14-7x=1071 | | 4^x=78 | | 3z+20z=8 | | 18/5=x/4 | | -12=-2x-2x+4 | | 675/9=x/13 | | 2(x+1)=2/3x=9 | | 35=2x+x+2 | | 8/4=9/x | | -6(18x-9)+13x=63 | | s-8/8=s-7/6 | | 95/5=x/11 | | 105=-4x-5x+6 | | x^2-5x+18.75=0 | | 5+6qq=9 | | -12x^2-3x=-8x^2-22 | | -14b^2-2=-3b | | 4/j=-4/j-2 | | -6+4x+4x=58 | | 4r^2+3r-20=-4r-9 | | 1/3y+8=12 | | 14x+7=11x-5 | | -x+8+5x=44 | | 7n^2-152=11n+4 | | 3(2.718)^5x=10 | | 30=4y+6 | | 4/b+2=10/b-4 | | 4(x+2)-2(x+4=32 |